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Appendix: Proofs of statements

Proof of Proposition 2. First, consider a stationary point p of g.
As shown [Montgomery and Zippin 1955], there is a neighborhood
U of p and a choice of smooth coordinates h : U → R2 system
on U such that g in these coordinates is a linear transformation
Ap

g , i.e. g = h−1 ◦ Ag ◦ h. It follows that Dg(p) has the form
V (p)Ap

gV (p)−1 where V (p) is the differential of the transforma-
tion h at point p. As Dg(p)2 = I at a stationary point, it follows
that (Ap

g)
2 = I . All such matrices have two eigenvalues, and both

its eigenvalues satisfy λ2 = 1.

Orientation-preserving g. In this case, we show that g cannot be a
reflection. In this case, both eigenvalues are either 1 or -1. Con-
sider the set M1(g) of all stationary points p with both eigenvalues
of Ap

g equal to 1, and let M2(g) be the set of all stationary points
with both eigenvalues equal to -1. For points fromM1(g),Ap

g = I ,
and g = h−1 ◦ h is identity on U , i.e. any stationary point of this
type has an open neighborhood of stationary points of the same
type. We conclude that M1(g) is open. At any stationary point p
from M2(g), Ap

g is −I , i.e. g has a single stationary point in U
(p itself): M2(g) consists of isolated points. On the other hand,
the set of all stationary points M(g) =M1(g) ∪M2(g) is closed,
as the limit of any sequence of stationary points is stationary by
continuity of g. The limit of a sequence of points from M1(g) has
to be a point from M1(g), as all points in M2(g) are isolated, so
the limit of points in M1(g) is also in M1(g). We conclude that
M1(g) is both open and closed. As we consider connected sur-
faces, an open/closed subset of an open surface has to be either
empty or the whole surface. In the former case, M(g) = M2(g),
i.e. the stationary set consists of isolated points. A set of isolated
points cannot separate the nonstatationary subset into two discon-
nected components, so we conclude that this case is not possible for
generalized reflections. In the latter case (M(g) = M1(g) is the
whole surface), the map g is an identity, i.e. this case is not possible
for reflections either.

Orientation-reversing g. If g is orientation-reversing, at every sta-
tionary point, its differential Dg and linear form A has eigenvalues
1 and −1, and in h(U) the stationary set of A is a line `, corre-
sponding to the stationary curve h−1(`) of g. As this holds for any
stationary point, the stationary curve can be extended indefinitely to
an embedding of the real line or a circle inM , forming a connected
component of the stationary set. As the stationary set is closed, its
connected components are also closed. But an embedding of a real
line in a compact manifold cannot be closed; we conclude that the
stationary set consists of embeddings of circles.

Consider a point p in one of the connected components M1 of the
non-stationary setM ′ ofM , mapped to a componentM2. Consider
the set of all points in M1 mapped to M2, i.e. M1 ∩ g−1(M2). As
M2 is both open and closed in M ′, so is g−1(M2) by continuity
of g. Thus, M1 ∩ g−1(M2) is also open and closed, so it has to
coincide with all of M1 as M1 is connected, i.e. g(M1) ∈ M2.
As g(g(p)) is p, by a similar argument, g(M2) ∈ M1, so M2 and
M1 are mapped to each other, and g(M1) = M2. Consider a point
p on the boundary of M1. As locally g acts as a linear reflection,
mapping one part of the neighborhood U of p to the other, U has to
consist of two disconnected parts from M1 and M2, i.e., any point
on the boundary of M1 separates it from M2. Then the union of

M1, M2 and their boundary is closed in M and has no boundary,
i.e., it has to coincide with M .

Proof of Lemma 1. By Proposition 2, the differential Dgp at a
stationary point p has two eigenvalues −1 and 1 (see proof above).
Let e1 be the eigenvector corresponding to eigenvalue 1: e1 is a
stationary direction of Dgp. Now let us assume a change of coor-
dinate system on Tp that aligns the first coordinate axis to e1. If
we express Dgp with respect to the new frame, it must necessarily
have the form: [

1 c
0 d

]
.

Since detDgp = −1 we necessarily have d = −1.

Proof of Corollary 3. Let g : M → M be a diffeomorphism
such that g2 = Id, M has sphere topology. As the stationary set
partitions M into two connected domains, each has to be a disk,
and so the curve is a topological circle (as it bounds a disk). Let
b : M → S be a one-to-one mapping from the surface to a sphere.
Let φ : S → S be a homeomorphism of the sphere to itself that
maps the stationary set of b◦g ◦b−1 to a great circle. It follows that
φ ◦ b ◦ g ◦ b−1 ◦ φ−1 has the circle as the stationary line. There is
a stereographic projection P from the sphere to the plane mapping
this circle to a line, say the x axis. Let h = P ◦φ◦b◦g◦b−1◦φ−1◦
P−1, this is a homeomorphism from Ĉ to Ĉ such that the x-axis is
stationary, and it swaps two halves of the plane. Clearly, h2 = Id.
Let R be the reflection of the plane that maps y to −y. Then R ◦ h
is a homeomorphism that maps each half-plane to itself. Let H1

and H2 be the two half-planes. Define the coordinate change f on
the plane as Id onH1, andR ◦h onH2. Then for x inH1, h(x) =
h◦R◦R◦Id = h−1◦R−1◦R◦Id = (Rh)−1◦R◦Id = f−1◦R◦f ,
and for x ∈ H2, again, h(x) = Id ◦ R ◦ R ◦ h = f−1 ◦ R ◦ f , in
other words, we got the factorization we wanted.

Proof of Lemma 4. Using the expression forRg , we observe that
it defines an analytic dependence of Rg on Dg, unless det(Dg +
DgT −Tr(Dg)I) = 0, which, as can be seen by direct calculation,
only happens if Dg is a similarity transformation. However, as Dg
is orientation-reversing, this is not possible. Since g2 = Id then
Dgg(p)Dgp = I . Since at a point p, Dgp = RgSg , then Dgg(p) =

Dg−1
p = Sg−1

(Rg)T = (Rg)TS′ with S′ = RgSg−1

(Rg)T

symmetric positive definite, so the closest orthogonal transform
to Dgg(p) is Rg(p)T , which implies the second statement of the
lemma.

Proof of Proposition 6. Let us assume v is not singular at p, and
letw be one of theN vectors of v(p). Since v is stationary (as aN -
symmetry field) for Rg , then Rgw must also be one of the vectors
of v(p), i.e., w and Rgw must form an angle of 2kπ/N for some
integer k = 0, . . . , N − 1. Since Rg is a pure reflection about an
axis t, this may happen only if w and t form an angle of kπ/N .
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